SETS, FUNCTIONS & RELATIONS

Definition: "Set" is synonymous with the words "collection", "aggregate", "class" and is comprised of elements. The words "element", "object" and "member" are synonymous.

If a is an element of a set A, then we write $a \in A$. If is assumed here that if A is any set and a is any element, then either $a \in A$ or $a \notin A$ and the two possibilities are mutually exclusive. Thus one cannot say "consider the set A of some positive integers", because it is not sure whether $3 \in A$ or $3 \notin A$.

Throughout this text we shall denote sets by capital Alphabets e.g. A, B, C, X, Y, Z etc. and the elements by small Alphabets e.g. a, b, c, x, y, z etc. The following are some examples of sets:

- 1. The collection of vowels in English Alphabets.
- 2. The collection of all past Presidents of the Indian Union.
- 3. The aggregate of all triangles in a plane.

The collection of good cricket players of India is NOT a set, since the term 'good players' is not well defined.

DESCRIPTION OF SETS

A set is often described in the following two ways. One can make use of any one of these two ways according to his (her) convenience.

- Roster Method (Tabular Form): In this method a set is described by listing elements, separated by commas, within brackets, For example, the set of vowels of English Alphabet may be described as {a, e, i, o, u} The set of even natural can be described as {2, 4, 6,...}. Here the dots stand for 'and so on' Note that the order in which the elements are written makes no difference. Thus {a, e, i, o, u} denote the same set. Also, repetition of an element has effect, for example {1, 2, 3, 2} is the same set as {1, 2, 3}.
- 2. Set Builder Method: In this method, a set is described by a characterizing property, P(x) of its elements x. In such a case the set is described by {x P (x) holds} or {x : P(x) holds}, which is read as 'the set of all x such that P(x) holds'. The symbol 'f' or ':' is read as 'such that'.

In this representation the set of all even natural numbers can be written as : {x | x is natural number and x = 2n for $n \in z$ }.

The set of all real numbers greater than + 1 and less than 1 can be described as : {x | x is a real number and -1 < x < 1}.

A set is said to be empty or void or null set if it has no elements. Thus a set A is said to be empty set if the statement $x \in A$ is not true for any x. If A and B are any two empty sets, then $x \in A$ iff (if and only if) $x \in B$ is satisfied because there is no element x in either A or B to which the condition may be applied Thus A = B. hence there is only one empty set and we denote it by ϕ Therefore article 'the' is used before empty set.

FINITE AND INFINITE SETS

Finite set: A set A is called a finite set if it is either the void set or its elements can be listed (counted, labelled) by natural numbers 1, 2, 3,....and the process of listing terminates at a certain natural number n (say).

The number n is called the **cardinality** (or order) of the set A is denoted by o(A) The void set is a finite set of cardinality zero. A set having only one element is called, a singleton set and its cardinality is one.

Infinite Set: A set whose elements cannot be listed by the natural numbers 1, 2, 3,.., n for any natural number n is called and infinite set.

EQUAL SETS

Two sets A and B are said to be equal if every element of A is a member of B, and every element of B is a member of A.

If sets A and B are equal, we write A = B and $A \neq B$ when A and B are not equal.

Let A = {1, 2, 5, 6} and B = {5, 6, 2, 1,}. Then $\overline{A} = \overline{B}$ because each element of A is an element of B and vice-versa.

SUBSETS

Let A and B be two sets. If every element of A is member of B, then A is called subset of B.

If A is subset of B, we write $A \subset B$, which is read as "A is a subset of B", "A is contained in B" Thus $A \subset B$ if a $\in A \Rightarrow a \in B$. (The symbol \Rightarrow stands for "implies").

If A is a subset of B we also say that B contains A or B is a superset of A and we write $B \supset A$. If A is not a subset of B, we write $A \not\subset B$.

Obviously every set is a subset (superset) of itself and the void set ϕ is subset of every set. These two subsets are called improper subsets. A subset of a set A is called a proper subset of A if S \neq A and we write S \subset A.

Thus, if S is a proper subset of A, then there exists an element $x \in A$ such that $x \notin S$.

It follows immediately from the definition that two sets A and B are equal iff A \subset B and B \subset A. Thus whenever we want to prove that two sets A and B equal, we must prove that A \subset B and B \subset A.

Theorem: Let A be a finite set having n elements. Then the total number of subsets of A is 2^{nd} number of proper subsets of A is $2^{n} - 1$.

FAMILY OR COLLECTION OF SETS

Let I be any set such that for each element $i \in I$ there is a set A_i . Then I is called and Index set and $\{A_i \mid i \in I\}$ is called family or collection of sets indexed by I.

POWER SET

Let A be a set. Then the family of all subsets of A is called the power set of A and is denoted by P(A). That is, $P(A) = \{S \mid S \subset A\}$.

Since the void set f and the set A itself are subsets of A and are therefore elements of P(A).

For example, let A = {1, 2, 3}. Then the subsets of A are f, {1}, {2}, {3}, {1, 2} {1, 3}, (2, 3) and {1, 2, 3} = A. Hence P(A) = { ϕ , {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {A}.

If A is the void set ϕ , then P(A) has just one element, i.e., ϕ It immediately follows from the theorem that if A is a finite set having n elements, then P(A) has 2ⁿ subsets.

UNIVERSAL SET

In any discussion in theory, there happens to be a set U that contains all sets under consideration Such as set is called the universal set. Thus a set that contains all sets in a given context is called the universal set. For example, in plane geometry the set of all points in the plane is the universal set.

Some Important Number Sets

N = Set of all natural numbers $= \{1, 2, 3, 4, \ldots\}$ Z or I Set of all integers $= \{\dots -3, -2, -1, 0, 1, 2, 3, \dots\}$ Z^{+} = Set of all + ve integers $= \{1, 2, 3, ...\} = N$ Z^- = Set of all – ve integers $= \{-1, -2, -3, ..\}$ W = Set of all whole numbers $= \{0, 1, 2, 3, \ldots\}$ Z₀ = The set of all non-zero integers $= \{\pm 1, \pm 2, \pm 3, ..\}$ Q = The set of all rational numbers. + $\left\{\frac{p}{q}: p, q \text{ are integers, } q \neq 0 \text{ and } (p, q) = 1\right\}$ R = The set of all real numbers. R - Q = The set of all irrational numbers.

e.g. $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$,... π , e, log 2 etc. are all irrational numbers.

VENN DIAGRAMS

Sometimes pictures are very helpful in our thinking. In Venn-diagrams, the universal set U is represented by points with a rectangle and its subsets are represented by points in closed curves (usually circles) within the rectangle. If a set A is a subset of a set B, then the circle representing A is drawn inside the circle representing B. If A and B are not equal but they have some elements, then to represent A and B we draw two intersecting circles.

OPERATIONS ON SETS

We shall now introduce some operations on sets to construct new sets from given ones.

Union: Let A and B be two sets. The union of A and B is the set of all those elements which belong either to A or to B or to both A and B. We shall use the notation $A \cup B$ (read as "A union B") to denote the union of A and B. Thus $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ or $x \in A \cup B \Leftrightarrow x \in A \text{ or } x \in B$

If $\{A_i | i \in I\}$ be an arbitrary family of sets, then the set of all those elements which belong to A_i for some $i \in I$ is called the union of the family of sets and is denoted by $\bigcup_{i=1}^{i} A_i$

Thus $\bigcup_{i \in I} A_i = \{x \mid x \in A_i \text{ for some } i \in I\}$. If $A_1, A_2, A_n\}$ is a finite family of sets, then their union is denoted by $\bigcup_{i=1}^n A_1$ or $A_1 \cup A_2 \cup \ldots \cup A_n$.

Intersection: Let A and B be two sets. The intersection of A and B is the set of all those elements that belong to both A and B.

The intersection of A and B is written as A $\bigcirc B$ (read as "A intersection B") Thus A $\cap B = \{x \mid x \in A \text{ and } x \in B\}$ or $x \in A \cap B \Leftrightarrow x \in A$ and $x \in B$. If $A \cap B = f$, A and B are called disjoint sets. If $\{A_i \mid i \in I\}$ is a family of sets, then the set of all elements x such that $x \in A_i$ for every $i \in I$ is called the interaction of the family of sets and is denoted by $\bigcap_{i \in I} A$

Thus $x \in \bigcap_{i \in I} A_i \Leftrightarrow x \in A$ for every $i \in I$.

A family $\{A_i \mid i \in I\}$ is called a disjoint family of sets if any two sets of the family are disjoint

That is a $A_i \cap A_i = \phi$ for all i, $j \in I$, $i \neq j$. If $\{A_1, A_2, \dots, A_n\}$ is a finite family of sets, then their intersection is denoted by

$$\bigcap_{i=1}^n A_i \text{ or } A_1 \cap A_2 \cap \ldots \cap A_n.$$

Difference: Let A and B be two sets. The difference of A and B, written as A – B, is the set of all those elements of A which do not belong to B. That is $A - B = \{x \mid x \in A \text{ and } x \notin B\}$ or $A - B = \{x \in A \mid x \notin B\}$. A.

Similarly the difference B – A is the set of all those elements of B that do not belong to That is B – A = { $x \mid x \in B$ and $x \notin A$ }.

Complement of a set: Let A and B be two sets such that $A \subset B$, then B – A is called the complement of A in B.

The complement of A in U, i.e. U - A is Simply called the complement A and is denoted by A' without any explicit reference of U. The shaded part represents A'.

Symmetric Difference of two sets: Let A and B be two sets. The symmetric difference of sets A and B is the set $(A - B) \cup (B - A)$ and is denoted by A Δ B. Thus A Δ B = $(A - B) \cup (B - A)$.

SOME VERY IMPORTANT RESULTS

Theorem : Let A, B, C be any sets, then

(i)	(a) A \cup A = A	
	(b) $A \cap A = A$	Idempotent laws
(ii)	(a) $A \cup B = B \cup A$	
	(b) $A \cap B = B \cap A$	Commutative laws
	, ,-	
(iii)	(a) A \cup (B \cup C) = (A \cup B) \cup C	
	(b) $A \cap (B \cap C) = (A \cap B) \cap C$	Associative laws
(1)	$(a) \land a (B \cup C) \land (A \cap B) \cup (A \cap C)$	
(17)	(a) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Distribution laws
	$(D) \land \bigcirc (B \land C) = (A \bigcirc B) \land (A \bigcirc C)$	Distributive laws
	Let A. B and X be any sets. Then	
(i)	$X - (X - A) = X \cap A$	
(ii)	$X - (A \cup B) = (X - A) \cap (X - B)$	De Morgan's rules
(iii)	$X - (A \cap B) = (X - A) \cup (X - B)$	_
Corollary: Let A, B be any sets. Then		
(i)	(A')' = A	
(ii)	$(A \cup B)' = A' \cap B'$	
(iii)	$(A \cap B)' = A' \cup B'$	
	RELATIONS	
a ten and deat of the order back A. D. We take a the Theory the order of all and		

Cartesian product of two sets: Let A, B be two sets. Then the set of all ordered pairs (a, b), where $a \in A$ and $b \in B$, is called the Cartesian product of A and B, in that order, and is denoted by A x B. Thus A x B = {(a, b) $| a \in A \text{ and } b \in B$ } For example, if A = {1, 2) and B = {a, b, c} then A x B = {(1, a), (1, b), (1, c), (2, a), (2, b) (2, c)} & B x A = {(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)}.

Since two ordered pairs (a, b) and (c, d) are equal iff a = c and b = d, therefore in general $A \times B \neq B \times A$. If $A = \phi$, then $A \times B = \phi$.

If set A has m elements and B has n elements, then A x B has mn elements.

If $\{A_i \mid i \in n\}$ is a finite family of n sets, then their Cartesian product $A_1 \times A_2 \times \ldots \times A_n$ is the set of all n-tuples $(a_1, a_2, \ldots, a_n) \mid a_i \in A_i\}$. Obviously $(a_1, a_2, \ldots, a_n) = (b_1, b_2, \ldots, b_n) \Leftrightarrow a_i = b_i$ for all i.

The Cartesian product of the set $A = \{x \in R \mid 1 \le x \le 1\}$ with itself can be identified as a unit square plate. A right circular cylinder can be identified as the Cartesian product of the base circle and a generating line. **Binary Relation:** Let A and B be two sets. Then a binary relation R from A to B is a subset of A x B. If A = B, then relation R from A to itself i.e. subset of A x A, then is called a relation on A (or in A).

If R is relation from a non-void set A to a non-void set B and if (a, b) \in R, then we write aRb (read a 'a is related to b by the relation R') If (a, b) \notin R, then we say that a is not related to b by a relation R. For example, R = {1, 2}, (1, 3), (2, 3)} defines a relation on the set A = {1, 2, 3}.

Since $R \subset A \times A$. Here (1, 2), (1, 3) and (2, 3) $\in R$, so we write 1 R 2, 1 R 3 and 2 R 3.

The total number of relations from a set A consisting of m elements to a set consisting n elements is 2^{mn} . Among these 2^{mn} relations the void relation ϕ and the universal relation A x B are trivial relations from A to B. **Domain and Range of a relation:** Let A and B be two sets and let R be a relation from A to B. Then the sets $\{a \mid (a, b) \in R\}$ and $\{b \mid (a, b) \in R\}$ are called respectively the domain and range of the relation R.

In other words, the domain and the rang of a relation R form a set A to a set B are respectively the sets of all first and second components of ordered pairs in R.

For example, let $R = \{(a, 1), (a, 2), (A, 2), (b, 2), (c, 1)\}$ be a relation from a set $A = \{a, b, c\}$ to a set $B = \{1, 2, 3\}$. 3}. Then domain of $R = \{a, b, c\}$ and range of $R = \{1, 2\}$.

Inverse of a relation: Let A, B be two sets and let R be a relation from a set A to a set B. Then the inverse of R, denoted by R^{-1} is a relation from B to A and is defined by $R^{-1} = \{(b, a) \mid (a, b) \in R\}.$

Obviously (a, b) $\in R \Leftrightarrow$ (b, a) $\in R^{-1}$. Also domain of R = Range of R⁻¹ and range of R = domain of R⁻¹.

For example, if R = {(a, 1), (a, 2), (c, 2)} is a relation from set A = {1, 2, 3} to a set B = {a, b, c}, then $R^{-1} = {(1, a), (2, a), (2, c)}$ and domain R = {a, c} = Range R^{-1} and range R = {1, 2} = domain R^{-1} .

Identity relation: Let A be a set. Then the relation $I_A = \{(a, a) | a \in A\}$ on A is called the identity relation on A. Under the identity relation on A, each element of A is related to itself only.

For example, the relation $\{(1, 1), (2, 2), (3, 3)\}$ is the identity relation on set A = $\{1, 2, 3\}$.

Reflexive relation: A relation R on a set A is said to be reflective if $(a, a) \in R$ for all $a \in A$.

- The identity relation on a non-void set is reflexive.
- The universal relation on a non-void set is reflexive.
- The relation R₁ = {(1, 1) (1, 2), (2, 2) (3, 3) (3, 4) (4, 4) is a reflexive relation on set A = {1, 2, 3, 4}. But the relation R₂ = {(1, 1) (1, 2) (2, 2) (3, 4) (4, 4)} is not reflexive on A, since 3 ∈ A, but (3, 3) ∉ R₂.
- The relation on N defined by the phrase "x is greater than or equal to" is a reflexive relation. But the relation defined by the phrase" is greater than" is not reflexive.

Note that the identity relation on a set A is a ways reflexive. However, a reflexive relation need not the identity relation. Moreover, the identity relation on a set A is the smallest reflexive relation that can be defined on A and the universal relation is the largest reflexive relation on A.

Symmetric relation: Let A be a set. A relation R on A is said to be a symmetric relation.

If
$$(a, b) \in R \Rightarrow (b, a) \in R$$
 for all $a, b, \in A$.

- The identity and the universal relational on a non-void set are symmetric relations.
- Let L be the set of all lines in a plane and let r be a relation defined on L by the rule, (x, y) R ⇔ x is
 perpendicular to y. Then R is a symmetric relation on L.

Transitive relation: Let A be any set relation R on A is said to a transitive relation if $(a, b) \in R$ and $(b, c) \in R$ \Rightarrow $(a, c) \in R$ for all a, b, c \in A.

- The identity and the universal relations on a set A are transitive relations.
- In the set N of all natural numbers a relation R defined by phrase "x is greater than y" is a transitive relation.
- The relation "is perpendicular to" on the set L of all lines in a plane is not transitive.

Because if a line I_1 is perpendicular to a line I_2 and I_2 is perpendicular to I_3 then I_1 is parallel to I_3 , i.e., I_1 is not perpendicular to I_3 .

Anti-symmetric relation: The identity relation on a set is antisymmetric. (a, b) $\in R$ and (b, a) $\in R \Rightarrow a = b$ for all a, b, c $\in A$.

- The identity relation on a set is antisymmetric.
- The universal relation on a set A containing at least two elements is not antisymmetric, because if a ≠ b are in A, then a is related to b and b is related to a under universal relation but a ≠ b.
- The relation ≤ ("less than or equal to") on the set R or real numbers is antisymmetric, because a ≤ b and b
 ≤ a ⇒ a = a = b for all a, b ∈ R.

Equivalence relation: Let E be a relation on a set A. The E is said to be an equivalence on A if E is reflexive, symmetric and transitive.

Partial order relation: Let R be a relation on a set A. Then R is said to be a partial order relation on if is reflexive, antisymmetric and transitive.

Relation of Congruence modulo n: Let n be a fixed positive integer For (any a, $b \in Z$, a is said to be congruent to b (modulo n) if n divides a - b. If a is congruent to b (modulo n), then we write $a \equiv b \pmod{n}$.

For example, $25 \equiv 5 \pmod{4}$ because $25 - 5 \equiv 20$ is divided by 4. But 25 is not congruent to 2 (mod 4) because 4 is not a divisor of 25 - 2 = 23.

Composition of Relations:

Let R and S be two relations from sets A to B and B to C respectively. Then we can define a relation SOR from A to C such that

 $(a, c) \in SOR \Leftrightarrow \exists \ b \in B \ s.t. \ (a, b) \in r \ and \ (b, c) \in S.$

This relation is called the composition of R and S.

For example, if A = {1, 2, 3}, B = {a, b, c, d}, C = {b, q, r, s} be three sets such that R = {(1, a), (2, c), (1, c), (2, d)} is a relation from A to B and S = {(a, s), (b, q), (c, r)} is relation from B to C.

Then SOR is a relation from A to C given by

SOR = {(1, s) (2, r) (1, r)}

In this case ROS does not exist.

In general ROS \neq SOR. Also (SOR)⁻¹ = R⁻¹OS⁻¹.

SOME IMPORTANT RESULTS ON NUMBER OF ELEMENTS IN SETS

If A, B and C are finite sets, and U be the finite universal set, then

(i) $n (A \cup B) = n(A) + n(B) - n(A \cap B)$

- (ii) $n(A \cup B) = n(A) + n(B) \Leftrightarrow A$, B are disjoint non-void sets.
- (iii) $n (A B) = n(A) n (A \cap B)$ i.e. $n(A - B) + n (A \cap B) = n(A)$

(iv) $n(A \Delta B) =$ Number of elements which belong to exactly one of A or B

 $= n ((A - B) \cup (B - A))$ = n (A - B) + n (B - A) [:: (A - B) and (B - A) are disjoint] $= n (A) - n (A \cap B) + n (B) - n (A \cap B)$ $= n (A) + n(B) - 2 n (A \cap B)$ $(A \cup B \cup C) = n(A) + n(B) + n(C) - n(A \cap B) - n(B \cap C) - n(A \cap C) + n(A \cap B \cap C)$ (v) Number of elements in exactly two of the sets A, B, C (vi) $= n (A \cap B) + n(B \cap C) + n(C \cap A) - 3 n(A \cap B \cap C).$ (vii) Number of elements in exactly one of the sets A, B, C $= n (A) + n (B) + n(C) - 2 n(A \cap B) - 2 n (B \cap C) - 2 n (A \cap C) + 3 n (A \cap B \cap C)$ (viii) $n(A' \cap B') = n((A \cap B)') = n(U) - n(A \cap B)$ $n(A' \cap B') = n((A \cap B)') = n(U) - n(A \cup B).$ (ix) Ex. If A and B be two sets containing 3 and 6 elements respectively, what can be the minimum number of elements in A \cup B? Find also, the maximum number of elements in A \cup B. **Sol.** We have, $n (A \cup B) = n(A)$ and $n(B) - n (A \cap B)$. This shows that $n (A \cup B)$ is minimum or maximum according as $n (A \cap B)$ is minimum respectively. **Case I:** When $n(A \cap B)$ is minimum, i.e. $n(A \cap B) = 0$. This is possible only when $A \cap B = \phi$. In this case, $n (A \cup B) = n(A)$ and n(B) - 0 = n(A) + n(B) = 3 + 6 = 9. So, maximum number of elements in $A \cup B$ is 9. **Case II:** When $n (A \cap B)$ is maximum. This is possible only when $A \subseteq B$. In this case $n (A \cap B) = 3$. \therefore $n(A \cup B) = n(A) + n(B) - n(A \cap B) = (3 + 6 + 3) = 6.$ So, minimum number of elements in $A \cup B$ is 6. **Ex.** If A, B and C are three sets and U is the universal set such that n(U) = 700, n(A) = 200, n(B) = 300 and $n(A \cap B) = 100$. Find $n(A' \cap B')$ **Sol.** We have $A' \cap B' = (A \cup B)'$ $\therefore n (A' \cap B') = n ((A \cup B)') = n(U) - n (A \cup B)$ $= n(U) - [n(A) + n(B) - n (A \cap B)]$ = 700 - (200 + 300 - 100) = 300.Ex. In a town of 10,000 families it was found that 40% families buy newspaper A, 20% families buy newspaper B and 10% families buy newspaper C: 5% families buy A and B, 3% buy B and C and 4% buy A and C. If 2% families buy all the three news papers, find the number of families which buy (i) A only (ii) B only (iii) none of A, B and C. **Sol.** Let P, Q and R be the sets of families buying newspaper A, B and C respectively. Let U be the universal set. *n* (*P*) = 40% of 10,000 = 4000, n(Q) = 20% of 10,000 = 2000, n(R) = 10% of 10,000 = 1000, $n (P \cap Q) = 5\%$ of 10,000 = 500, $n (Q \cap R) = 3\%$ of 10,000 = 3000, $n(R \cap P) = 4\%$ of 10,000 = 400

 $n (P \cap Q \cap R) = 2\%$ of 10,000 = 200 and n (U) = 10,000

- (i) Required number $= (P \cap Q' \cap R') = n (P \cap (Q \cup R)')$ $= n (P) - n [P \cap (Q \cup R)] \qquad [\because n(A \cap B') = n(A) - n(A \cap B)]$ $= n (P) - n [(P \cap Q) \cup (P \cap R)]$ $= n (P) - [n (P \cap Q) + n (P \cap R) - n \{(P \cap Q) \cap (P \cap R)\}]$ $= n (P) - [n (P \cap Q) + n (P \cap R) - n (P \cap Q \cap R)]$
- = 400 [500 + 400 200] = 3300(ii) Required number $= n (P' \cap Q \cap R) = n (Q \cap P' \cap R')$ $= n (Q \cap (P \cup R)')$ $= n (Q) - n (Q \cap (P \cup R)) \quad [\because n (A \cap B') = n (A) - n (A \cap B)]$ $= n (Q) - n [(Q \cap P) \cup (Q \cap R)]$ $= n (Q) - [n (Q \cap P) + n (Q \cap R) - n \{(Q \cap P) \cap (Q \cap R)\}]$ $= n (Q) - [n (P \cap Q) + n (Q \cap R) - n (P \cap Q \cap R)]$ = 2000 - [500 + 300 - 200] = 1400(iii) Deriving number
- (iii) Required number = $n (P' \cap Q' \cap R') = n [P \cup Q \cup R)']$ = $n (U) - n (P \cup Q \cup R)$
 - $= n(U) [n(P) + n(Q) + n(R) n(P \cap Q) n(Q \cap R) n(R \cap P) + n(P \cap Q \cap R)]$
 - = 10000 [4000 + 2000 + 1000 500 300 400 + 200] = 4000.

Examples:

- **1.** Given A = {1, 2, 3}, B = {3, 4}, C = {4, 5, 6}, find A \lor (B \cup C) and (A x B) \cap (B x C)
- **Sol.** Clearly A \cup (B \cup C) = {1, 2, 3, 4, 5, 6}. Now A x B = {(1, 3) (1, 4), (2, 3), (2, 4), (3, 3) (3, 4)} and B x C = {(3, 4), (3, 5), (3, 6), (4, 4) (4, 5), (4, 6)}. Hence (A x B) \cap (B x C) = {(3, 4)}.
- 2. If a N = {ax : $x \in N$ }. Describe the set 3N \cap 7N.
- **Sol.** According to the given notation, $3N = \{3x : x \in N\} = \{3, 6, 9, 12, ...\}$ and $7N = \{7x : x \cap N\} = \{7, 14, 21, 28, 35, 42, ...\}$ Hence $3N \cap 7N \neq \{21, 42, 63, ...\} = 21x : x \in N\} = 21N$.
- (a) If A = {a, b, c, d}, B = {a, 2, 3}, find whether or not the following sets of ordered pairs are relations from A to B or not.
 - (i) $R_1 = \{(a, 1), (a, 3)\}$
 - (ii) $R_2 = \{(b, 1), (c, 2), (d, 1)\}$
 - (iii) $R_3 = \{a, 1\}, (b, 2), (3, 1)\}$
 - (b) If A = {1, 2, 3, 4}, define relations on A-which have properties of being
 (i) reflexive, transitive but not symmetric.
 (ii) symmetric but neither reflexive nor transitive.
 (iii) reflexive, symmetric and transitive
- Sol. (a) (i) yes, (ii) yes, (iii) No. Ans.
 - (b) (i) We define a relation R_1 as $R_1 = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 3), (1, 3)\}$ Then it is easy to check that R_1 is reflexive, transitive but not symmetric.

- (ii) Define R_2 as : $R_2 = \{(1, 2), (2, 1)\}$ It is clear that R_2 is symmetric but neither reflexive nor transitive. Write other relations of this type
- (iii) We define R_3 as follows: $R_3 = \{(1, 1), (2, 2), (3, 3), (4, 4), (1, 2), (2, 1)\}$ Then evidently R_3 is reflexive, symmetric & transitive i. e R_3 is an equivalence relation on A.
- **Sol.** R₁ is reflexive but neither symmetric nor transitive. R₂ is symmetric but neither reflexive nor transitive. R₃ is transitive but neither symmetric nor reflexive. R₄ is reflexive, symmetric and transitive that is R₄ is an equivalence relation
- 5. If R be a relation from A = {1, 2, 3, 4} to B = {1, 3, 5}, such that a R b i.e. (a, b) ∈ R iff a < b, then ROR⁻¹ is
 - (1) {(1, 3), (1, 5), (2, 3) (2, 5), (3, 5), (4, 5)}
 - $(2) \{(3, 1), (5, 1), (3, 2), (5, 2), (5, 3), (5, 4)\}$
 - (3) {(3, 3), (3, 5), (5, 3), (5, 5)}
 - (4) {(3, 3), (3, 4), (4, 5)}
- Sol. Ans. (3) we have R = {(1, 3), (1, 5), (2, 3), (2, 5), (3, 5), (4, 5) ∴ R⁻¹ = {3, 1), (5, 1), (3, 2), (5, 2), (5, 3), (5, 4)} Hence ROR⁻¹ = {(3, 3), (3, 5), (5, 3), (5, 5)}
- 6. In a group of 1000 persons, 760 can speak Hindi & 430 can speak Bengali.(a) How many can speak both? (b) How many can speak Hindi only & Bengali only?

Sol. Let H denote Hindi, B denote Bengali We have a + b = 760, b + c = 430, a + b + c = 1000 $\Rightarrow a = 570$, c = 240 or b = 190 or 190 people can speak both 570 only Hindi & 240 only Bengali.

Alternative Method:

 $n (H \cup B) = n(H) + n(B) - (H \cap B) \Rightarrow 1000 = 760 + 430 - n (H \cap B) \Rightarrow n(H \cap B) = 190 \text{ etc.}$

- 7. In a certain city only two newspapers A & B are published It is known that 25% of the city population reads A & 20% read B while 8% read both A & B It is also known that 30% of those who read A but not B, look into advertisements and 40% of those who read B but not A, look into advertisements while 50% of those who read both A & B look into advertisements. What percentage of the population read an advertisement?
- **Sol.** Let A & B denote sets of people who read paper A & paper B resp, then n(A) = 25, n(B) = 20, $n(A \cap B) = 8$. Hence $n(A - B) = n(A) - n(A \cap B) = 25 - 8 = 17$ $n(B - A) = n(B) - n(A \cap B) = 20 - 8 = 12$

Now percentage of people reading an advertisement = [(30% of 17) + (40% of + 12) + (50% of 8)]% = 13.9% Ans.

In a survey of 2000 students, 48% used coffee (C), 54% used tea (T) and 64% smoked (S). Of the total, 28% used C & T, 32% used T & S and 30% used C & S. 6% did not like any of the three. Find:

Alternative Method:

n (C ∪ T ∪ S) = n(C) + n(T) + n(S) - (C ∩ T) - (C ∩ S) - n (T ∩ S) + n(C ∩ T ∩ S) ⇒ 1880 = 960 + 1080 + 1280 - 560 + 640 - 600 + n(C ∩ T ∩ F) ⇒ n(C ∩ T ∩ S) = 360 (This value is basically the "c" of the first method). Now from the figure, all the values can be determined one by one.

